
 
 

 
 

 
 

Segmentation and assessment of structural plasticity of hippocampal 
dendritic spines from 3D confocal light microscopy 

 
Subhadip Basu*a, Punam Kumar Sahab, Ewa Baczynskac, Matylda Roszkowskac, Marta 

Magnowskac, Nirmal Dasa, Indranil Guhab, Jakub Wlodarczyk*c 

aDepartment of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India.; 
bDepartment of Electrical and Computer Engineering and Department of Radiology, University of 

Iowa, Iowa City, IA 52242, USA.; 
  cNencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, Warsaw, 02-

093, Poland. 

ABSTRACT   

We present new methods for segmentation of hippocampal dendritic spines in 3D confocal light microscopy and 
computation of 3-D morphological attributes characterizing dendritic spine plasticity. The methods are applied on 3D 
confocal light microscopy images of dendritic spines from dissociated hippocampal cultures. The segmentation method is 
based on the principle of multi-scale opening which uses a set of user-specified seeds and iteratively segments structures 
at different scales starting at a large scale and progressing toward finer scales. The accuracy of the segmentation method 
is evaluated by comparing its results with the gold standard obtained by manual labelling. The reproducibility of the overall 
method involving segmentation as well as computation of structural measures is assessed by comparing the values of 
structural measures derived from segmentation results generated using seeds from three mutually-blinded users. Finally, 
the performance of the overall method is examined in terms of its ability to characterize spine morphological changes after 
chemically induced long-term potentiation.  
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1. INTRODUCTION  
Dendrites of different neurons in different regions of the brain are covered with a small membranous protrusions called 
dendritic spine 1 that receives excitatory input from a single axon at the synapse 2. The dendrites of a single neuron can 
have of hundreds to thousands of spines. The dendrites of a single neuron can have of hundreds to thousands of spines. 
Dendritic spines are of distinct structural features and fall in a heterogeneous group in terms of size and shape. 
Morphologically, dendritic spines have two parts one is a spine head and another is a thin neck which connects the spine 
to the parent dendrite 3. Dendritic spines are essential for the accurate activity and signal transmission of neural circuits, 
but their exact function is still hard to understand and remains under comprehensive research 456. The shape of dendritic 
spines may change depending on activity- and experience which link synaptic plasticity 7891011 with biological phenomena 
that are critical for synaptic function 1213. Although the consequences of these morphological changes are not clear, many 
researchers believe structural plasticity of dendritic spines assist learning and memory 6. According to 14 the structural 
plasticity of dendritic spines is indeed related to synaptic function. Recent works propose the structural models of synaptic 
plasticity which links long-term potentiation with spine enlargement 1516. 

Due to complex morphology of the dendritic spines, many aspects of the existing relation between structure and 
synaptic function is unknown 1718. Although significant progress have been made in imaging technologies for both in vivo 
and in vitro, the limited optical resolution of images obtained using popular confocal microscopy technique lead to 
difficulties in spine segmentation from dendrites and the identification of true spine boundaries 192021. Therefore, the 
accurate quantitative analysis of spines is a challenge to the neuroscientists. A robust and unbiased image analysis tool for 
quantitative analysis of dendritic spine morphology is need of the time 2223. 

The most popular approach to address the issue is using two-dimensional (2-D) images that are generated from 
the maximum intensity projection (MIP) of the image stack, acquired by high-resolution confocal microscopy. A PCT 
application 24 presents a method for characterizing one or more neurons and dendritic spines using a grassfire process but 
the detailed description of precise spine contour detection is missing. A US patent application 25 presents a method for 



 
 

 
 

 
 

determining neuronal morphology and the effects of substances thereon using dendritic spine detection. The work 2627 
presents a method for the segmentation and analysis of every spine separately using a contour tracing algorithm to detect 
the spine boundary and morphological attributes. However, the spine segmentation process requires extensive user 
intervention and is time-consuming and error-prone. Basu et al. 28 recently published a more accurate and rapid tool for 
assessing spine features from 2-D MIP images of dendritic spines. Authors used a novel convolution kernel-based approach 
to segment the spines from the dendritic segments and classified the segmented spines into one of four categories: stubby, 
filopodia, mushroom, and spine-head protrusions. 

However, all of these methods utilize 2-D MIP images of dendritic spines to analyze structural details of 
individual spines. Accurate analysis is nearly impossible based on 2-D MIP images of dendritic spines because MIP images 
are highly discontinuous and may lead to erroneous analysis. Therefore, in the present work, we focused on analyzing 
dendritic spine images based on 3-D volume that were generated from the confocal image stack. A few previous studies 
also addressed the issue of individual spine morphometry. Imaris software 29 is a commercially available tool for the four-
dimensional (4-D) analysis of dendritic spines. Although Imaris software is good for analyzing the overall spine population, 
it fails to accurately model the three-dimensional (3-D) morphology of individual spines. Swanger et al. 30 also reported 
an automated method for the 4-D analysis of dendritic spine morphology using the same Imaris pipeline. Both methods 
generally fail to assess individual spine plasticity. 

In the present study, different neurons from rat dissociated hippocampal cultures were imaged using a confocal 
light microscope after chemically induced long-term potentiation (cLTP). The methodology that we developed allows the 
user to mark specific dendritic spines and uses a multi-scale opening (MSO) algorithm 313233 to segment the spines as 3-D 
volumes, and extract relevant morphometric features with high accuracy and minimal user intervention for the accurate 
assessment of dendritic spine plasticity. We mathematically defined different key spine compartments (e.g., spine head 
and spine neck) and observed the changes of their morphological attributes (e.g., Total Volume, spine length, and head 
width) with cLTP. However, the accurate quantification of structural changes was perceived to be difficult because of the 
insufficient spatial resolution of confocal microscopy. Our experimental observations showed that cLTP led to coordinated 
morphological changes in total spine volume, spine length, spine necks and head width. We validated the feasibility of 
accurately analyzing dendritic spines morphologically using confocal microscopy despite its limited spatial resolution. 

 

2. THEORY AND METHODS 
In this work 32 we have used the concept of the MSO algorithm for the segmentation task. MSO algorithm 

combines the concept of fuzzy distance transform (FDT) 34, iterative fuzzy connectivity (IFC) 3536 and and iterative relative 
fuzzy connectivity (IRFC) 3738. The concept of FDT, FC and IRFC has been widely used in many image processing tasks 
3940 before. The MSO algorithm gradually erode the assembly of two fused objects, in this case spines and dendrites, until 
those two objects become mutually disconnected, thus creating two separate objects. The first iteration starts with two sets 
of seed voxels, 𝑆Spine and 𝑆Dendrite, and a set of common separators, 𝑆𝒮 . The initial FDT map 𝛺Spine,0 for the first object 
is computed from the combined image space, except that the voxels in 𝑆Dendrite ∪ 𝑆𝒮  are added to the background. The 
FDT map 𝛺Dendrite,0 for the other object is computed similarly. The sets 𝑆Spine, 𝑆Dendrite, and 𝑆𝒮  are mutually exclusive. 

Let us now consider the coupling of two objects with significant intensity overlap, are fused with each other at 
different unknown locations and scales. Let 𝜇Dendrite and 𝜇Spine denote the dendrite and spine membership functions, 
defined as the following: 

 𝜇Dendrite(𝑝) = {

0, if 𝐼 (𝑝) < 𝐼Spine,
𝐼(p)−𝐼Spine

𝐼Dendrite−𝐼Spine
, if 𝐼Spine ≤ 𝐼(𝑝) <  𝐼Dendrite,

1 otherwise,

  (1) 

𝜇Spine(𝑝) =

{
 
 

 
 

0,  if 𝐼(𝑝) < 𝐼min,
1, if 𝐼min ≤ 𝐼(𝑝) < 𝐼Spine,

𝐼Dendrite−𝐼(𝑝)
𝐼Dendrite−𝐼Spine

, if 𝐼Spine ≤ 𝐼(𝑝) <  𝐼Dendrite,

0,  if 𝐼(𝑝) ≥ 𝐼Dendrite,

   (2) 

where 𝐼: 𝑂 → [𝐼min , 𝐼max] is the image intensity function over 𝑂, the set of all voxels with non-zero membership. 𝐼Spine, 



 
 

 
 

 
 

 
 

 
 
 

 
Figure 1. Confocal light microscopy image of hippocampal dendritic spines; a) maximum intensity projection (MIP) of the 
z-stack with an outlined region-or-interest (ROI), b) the cropped and enlarged MIP image of the selected ROI, c) 3-D 
rendition of the selected ROI from the confocal z-stack with enhanced morphological details of individual spines, d) 
reoriented image (c), e) 3-D segmentation result of the selected ROI with the extracted spines marked in green colour. 

and 𝐼Dendrite is the representative spine and dendrite intensities that define the respective transition between pure and 
shared intensity bands. Let 𝑃Dendrite ⊂ 𝑂 and  𝑃Spine ⊂ 𝑂 be the set of voxels that fall inside the pure intensity band for 
dendrite and spine respectively. Thus, the set of voxels that fall within the shared intensity band is 𝑂Shared = 𝑂 −
𝑃Dendrite − 𝑃Spine. A fuzzy representation of the composite object may be obtained by taking the fuzzy union of the two 
membership functions that are shown in Equations 1 and 2. The iterative approach of the multi-scale opening of two 
structures takes several iterations to grow the path-continuity of an object, starting from its seed voxels (commonly added 
in large-scale regions), to a peripheral location with fine-scale details. 

Note that after the iterative propagation of the MSO algorithm, the dendrite region is segmented as a single 
connected component.  𝑂Spine represents one or more disjointed spine regions (𝑅𝑖), such that  𝑂Spine = ⋃ 𝑅𝑖𝐾

𝑖=1  , where 𝐾 
is the total number of disjointed spine segments in  𝑂Spine, and each such segmented spine region 𝑅𝑖 contains at least one 
spine seed 𝑝 ∈ 𝑆Spine.  

Morphological definitions for the spine regions: 
After the proper segmentation of dendritic spines, the next task is to mathematically define various spine attributes for 
assessment of their morphometry. In the present study, we defined several key morphological features of 3-D dendritic 
spines for plasticity analysis. Specifically, we defined four key spine features that are related to the base and head of a 
spine using standard notations of digital topology and geometry 4142.  
 
Definition 1. For a given spine  𝑅𝑖 ⊂  𝑂Spine, the base of the spine is defined as the set of points 𝐵𝑖 ⊂  𝑂Dendrite  such 
that ∀𝑝 ∈ 𝐵𝑖 , ∃𝑞 ∈ 𝑅𝑖  is adjacent to 𝑝. 



 
 

 
 

 
 

Definition 2. For a given spine 𝑅𝑖 ⊂ 𝑂Spine, the central base point 𝐶𝐵𝑃𝑖  is the centroid of the base of the spine 𝑅𝑖 (i.e., 
𝐶𝐵𝑃𝑖 =

1
|𝐵𝑖|
∑ 𝑝∀𝑝∈𝐵𝑖 , where |⋅| is the cardinality of a set). 

The head and tip of a spine are defined using the FDT map 34 Ω𝑖  of 𝑅𝑖. A locally deepest point in a spine 𝑅𝑖 is a point 
𝑝 ∈ 𝑅𝑖 such that ∀𝑞 ∈ 𝒩𝑙(𝑝) Ω𝑖(𝑞) ≤ Ω𝑖(𝑝), where 𝒩𝑙(𝑝) is the (2𝑙 + 1)3 neighborhood of 𝑝. Here, 𝑙 = 2 is used to 
avoid noisy local maxima. 
 
Definition 3. The center of the head 𝐶𝐻𝑖 of a spine 𝑅𝑖 is the locally deepest point in the spine. In a situation where multiple 
locally deepest points satisfy the farthest distance criterion, their centroid is used. 
 

Definition 4. The tip of a spine 𝑇𝑖  of a spine 𝑅𝑖 is a point 𝑇𝑖 ∈ 𝑅𝑖 that is farthest from its central base point 𝐶𝐵𝑃𝑖 . In a 
situation where multiple points of 𝑅𝑖 satisfy the farthest distance criterion, their centroid is used. 

Note that 𝐶𝐵𝑃𝑖 , 𝐶𝐻𝑖, and 𝑇𝑖  play key roles in estimating spine attributes, such as length of the spine, neck-length, 
neck-width, head-width, etc., for each individual spine 𝑅𝑖. To estimate these features, we further extended the above 
definitions to find the geodesic path from base to head 𝐵𝐻𝑖 of the spine 𝑅𝑖 by joining the two central points 𝐶𝐵𝑃𝑖 and 𝐶𝐻𝑖 
such that ∑ Ω𝑖(𝑝)∀𝑝∈𝐵𝐻𝑖  is minimized. Likewise, we computed the central path from head to spine-tip 𝐻𝑇𝑖  of the spine 𝑅𝑖 
by joining 𝐶𝐻𝑖 and 𝑇𝑖 , such that ∑ Ω𝑖(𝑝)∀𝑝∈𝐻𝑇𝑖  is minimized. Figure 3 shows an illustration of these key spine attributes 
with respect to a segmented spine. 

We now estimate the neck length 𝑁𝐿𝑖 of 𝑅𝑖 as 𝑁𝐿𝑖 = 𝐵𝐻𝑖 − Ω𝑖(𝐶𝐻𝑖). Minimum neck-width 𝑀𝑁𝑊𝑖 of 𝑅𝑖 is 
estimated as 𝑀𝑁𝑊𝑖 = min

∀𝑝∈𝐵𝐻𝑖
(Ω𝑖(𝑝)). Average head-width 𝐴𝐻𝑊𝑖 of the spine 𝑅𝑖 is estimated as 𝐴𝐻𝑊𝑖 = avg

∀𝑝∈𝐻𝑃𝑖
(Ω𝑖(𝑝)) 

such that 𝐻𝑃𝑖  is the set of all locally deepest points in 𝑅𝑖. Finally, the length of the spine 𝐿𝑖 is estimated as 𝐿𝑖 = |𝐵𝐻𝑖| +
|𝐻𝑇𝑖|. 
 

3. RESULTS 
The methodology that we developed is useful in the accurate volumetric assessment of spine plasticity. Two specific 
challenges are involved in this process: (1) accurate 3-D segmentation of individual spines from the dendritic segment (see 
Figure 1) and (2) quantitative analysis of individual spine morphology for the assessment of structural changes in dendritic 
spines (see Figure 2). The confocal light microscopy images of dendritic spines from dissociated hippocampal cultures 
were used for (1) the analysis of accuracy relative to ground-truth, generated by experimental biologists and the available 
state-of-the-art Imaris tool, 2) the analysis of reproducibility of the segmentation results, and (3) the quantitative analysis 
of morphological changes in spines. The detail description of the datasets is given on 28. In the first dataset, three different 
neurons from rat dissociated hippocampal cultures were imaged using a confocal light microscope, before and after 
cLTP(50 μM forskolin, 50 μM picrotoxin, and 0.1 μM rolipram; each dissolved in dimethylsulfoxide [DMSO]) induction. 
All of the images were captured three times: at baseline (before cLTP) and 10 and 40 min after cLTP induction. In the 
second dataset, three different neurons from rat dissociated hippocampal cultures were similarly imaged at baseline and 
10 and 40 min after mock cLTP induction (i.e., only the solvent, DMSO, was used). During image pre-processing, we took 
the confocal z-stack and performed Gaussian de-noising on the 3-D image stack. The pre-processed images at time 0 are 
labeled as T0, and the images that were captured at 10 and 40 min are labeled as T10 and T40, respectively.  

Figure 3 shows the segmented spine on a sample dendritic segment. For accuracy analysis, we first generated 
ground-truth spine segmentation results for all of the neuronal images by manually labeling ideal spine regions of a sample 
spine population with the help of experimental biologists using the open-source image processing software Fiji 43 and ITK 
Snap 44. Although both Fiji and ITK Snap are general-purpose image analysis tools, neither of them are capable of 
extracting morphological attributes that are specific to a dendritic spine. The 3-D rendering of a sample dendritic segment 
is shown in Figure 4(a). Manual ground-truth segmentation results of the sample spines are shown in Figure 4(b). For the 
quantitative analysis of spine segmentation accuracy, we considered the most generic features, such as the volume and 
length of a spine. We calculated Pearson’s correlation coefficients to assess the mean agreement of the estimated feature 
values between the currently developed method and the ground-truth annotations. The respective Pearson’s correlation 
coefficients for volume and length, estimated over a sample spine population with manually annotated ground-truth results, 
were 0.89 and 0.82, respectively. For qualitative comparisons of the 3-D segmentation results, we considered the state-of-



 
 

 
 

 
 

the-art Imaris tool 45 that was applied over the same set of images that were considered in this study. Figure 5 shows the 
qualitative comparisons of our segmentation results with Imaris. In this section, we present multi-user reproducibility of 
the currently developed method to assess the reliability and robustness of the segmentation methodology. The 
reproducibility analysis was performed on a sample spine population with three mutually blinded, independent 
experimental biologists. The percent standard deviations relative to the mean feature estimation for the three independent 
users were ±16% and ±6% for total volume and spine length, respectively. 

 For qualitative and quantitative analyses of dendritic spines, we assessed the segmentation results of the currently 
developed methodology over the same dendritic segments from different sets of the T0, T10, and T40 images. We present 
detailed 3-D morphological changes in dendritic spines over time (i.e., before and after cLTP). To investigate the relative 
changes in various morphological attributes of the segmented spines, three important features i.e., total volume, spine 
length, and head-width were considered from the overall experiment. Figure 6 shows the percent relative changes in these 
three attributes 10 and 40 min after cLTP induction. 

 
Figure 2. Illustration of a segmented spine structure with automatic quantitative assessment of different spine attributes. 

 
Figure 3. (a) Sample enlarged dendritic segment taken from MIP image of confocal Z stack. (b) 3D rendering of the 
reconstructed dendritic segment. (c) 3D rendering of the reconstructed dendritic segment with segmented spine shown in red 
color 



 
 

 
 

 
 

 

 
Figure 4. Ground-truth spine segmentation. (a) 3-D rendering of a sample dendritic spine segment. (b) Manual segmentation of the 
spines obtained from (a) using ITK Snap and Fiji 3-D image processing tools. 

 
Figure 5. Comparative analysis of 3-D segmentation results relative to the state-of-the-art Imaris tool45. The arrows indicate 
representative spines. (a) 3-D rendering of a spine segment. (b) 3-D segmentation result using the currently developed algorithm. (c) 
3-D segmentation result of the same dendritic segment superimposed on the corresponding MIP image. 

 

 
Figure 6. Qualitative percent relative changes in individual spine morphology (Volume, Spine Length and Head Width) estimated by 
the currently developed method after cLTP induction. 



 
 

 
 

 
 

4. CONCLUSION AND DISCUSSION 
The present study presented an important issue of accurate 3D segmentation of dendritic spines and qualitative and 
quantitative assessment of changes in dendritic spine morphology over time. The proposed segmentation method was 
validated for individual spines using real-time experiments and consecutive images of the same dendritic fragment. Our 
results are consistent with other studies that reported growth of spine morphological attributes upon cLTP induction 4647. 
The plasticity analysis was performed 10 and 40 min after cLTP induction relative to baseline images. Accuracy was 
evaluated relative to manually labeled ground-truth annotations and segmentation result of state of the art Imaris Tool 45. 
To assess the reproducibility of the segmentation results, three blinded experts separately assessed the efficacy of the 
methodology. The currently developed method was also able to quantitatively assess changes in morphology after cLTP. 
Although this experiment exclusively used confocal light microscopy images of dendritic spines, the method may be 
extended in the future for use with other super-high-resolution imaging techniques, such as photo-activated localization 
microscopy. The present 3-D segmentation method may be used for different experimental protocols that study the 
structural dynamics of dendritic spines in vitro and in vivo under various physiological and pathological conditions. 
Moreover, we believe that this will be an excellent research tool that enables the detection of even subtle changes in the 3-
D dendritic spine structure. Such methodological advances in spine morphological studies will allow more precise analyses 
and better interpretations of biological data regarding structural plasticity.  
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