
 
 

 
 

Unsupervised GAN-CIRCLE for High-Resolution Reconstruction of 
Bone Microstructure from Low-Resolution CT Scans  

Indranil Guha,a* Syed Ahmed Nadeem,a Xiaoliu Zhang,a Steven M Levy,c James C Torner,d Punam 
K Sahaa,b 

 
aDepartment of Electrical and Computer Engineering, College of Engineering, University of Iowa, 

Iowa City, IA 52242 
bDepartment of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 

cDepartment of Preventive and Community Dentistry, College of Dentistry, University of Iowa, 
Iowa City, IA 52242  

dDepartment of Epidemiology, University of Iowa, Iowa City, IA 52242 

ABSTRACT 

Osteoporosis is an age-related disease associated with reduced bone density and increased fracture-risk. It is known that 
bone microstructural quality is a significant determinant of trabecular bone strength and fracture-risk. Emerging CT 
technology allows high-resolution in vivo imaging at peripheral sites enabling assessment of bone microstructure at low 
radiation. Resolution dependence of bone microstructural measures together with varying technologies and rapid upgrades 
in CT scanners warrants data-harmonization in multi-site as well as longitudinal studies. This paper presents an 
unsupervised deep learning method for high-resolution reconstruction of bone microstructure from low-resolution CT 
scans using GAN-CIRCLE. The unsupervised training alleviates the need of registered low- and high-resolution images, 
which is often unavailable. Low- and high-resolution ankle CT scans of twenty volunteers were used for training, 
validation, and evaluation. Ten thousand unregistered low- and high-resolution patches of size 64×64 were randomly 
harvested from CT scans of ten volunteers for training and validation. Five thousand matched pairs of low- and high-
resolution patches were generated for evaluation after registering CT scan pairs from other ten volunteers. Quantitative 
comparison shows that predicted high-resolution scans have significantly improved structural similarity index (p < 0.01) 
with true high-resolution scans as compared to the same metric derived from low-resolution data. Also, trabecular bone 
microstructural measures such as thickness and network area measures computed from predicted high-resolution CT 
images showed higher (CCC = [0.90, 0.84]) agreement with the reference measures from true high-resolution scans 
compared to the same measures derived from low-resolution images (CCC = [0.66, 0.83]). 
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1. INTRODUCTION  
Osteoporosis is a bone disease characterized by reduced bone mineral density (BMD), degenerated bone microstructure 
and enhanced fracture-risk. Although osteoporosis is a disease across all ages and both genders, its prevalence grows with 
aging, especially among Caucasians and women after menopause.1 Approximately, 40% of women and 13% of men suffer 
osteoporotic fractures in their lifetime, and increased life expectancy will increase fracture incidence to 6.3 million by 
2050.2 Dual-energy X-ray absorptiometry (DXA) measured areal BMD is the clinical standard for diagnosis of 
osteoporosis. It has been shown that BMD explains 60-70% of the variability in bone strength and fracture-risk,3 and the 
remaining variability comes from the collective effect of other factors such as cortical and trabecular bone distribution, 
and their microstructural basis.4-6 Thus, standardized imaging methods for quantitative and effective assessment of bone 
microstructure is an urgent need for research and clinical bone studies. 
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Various topologic and geometric methods are available in literature to measure trabecular bone (Tb) micro-structure.7-10 
Vesterby et al.7 conceived a stereological parameter, called star volume, which is the average volume of an object region 
that can be seen from a point inside that region unobscured in all directions. Hahn et al.8 introduced the “trabecular bone 
pattern factor” which captures Tb connectivity in terms of the convexity property of the Tb surface defined as the ratio of 
the differences in perimeter and area under dilation. Hildebrand et al.9 developed a three-dimensional (3-D) structure model 
index, a function of global plate-to-rod ratio, based on the observation that the rate of volume change with respect to half 
thickness (or the radius) for plate-like elements is different from that for rod-like elements. Feldkamp et al.10 showed that 
the makeup of Tb networks can be expressed in terms of topological entities such as the 3-D Euler number. Saha and his 
colleagues have pioneered unique algorithms,11-18 characterizing individual trabecular plates and rods, which have been 
adopted in a large number of studies.12-15,19-38 

Several 3-D bone micro-imaging modalities, including magnetic resonance imaging (MRI)3,39-41 and high-resolution 
peripheral quantitative computed tomography (HR-pQCT),42-44 have been popularly applied in bone studies. Emerging 
multi-detector-row CT (MDCT) scanners allow high-speed and high-resolution in vivo imaging at peripheral sites enabling 
segmentation and assessment of bone microstructure at low radiation. MDCT technologies overcome the major deficits of 
MRI and HR-pQCT modalities related to slow scan speed, limited field-of-view and failure to provide quantitative BMD 
for MRI.42,45 However, lack of standardization of MDCT based bone microstructural measures is a major concern in multi-
site as well as longitudinal bone studies, which emerges from wide discrepancies in spatial resolution, and other imaging 
and reconstruction features from different vendors and rapid upgrades in technology.  Often, in longitudinal studies old 
scanner gets substituted by a new and upgraded scanner at the middle of the study causing inconsistency in data acquisition 
and analysis or even a waste of previous data collected using the older machine. It initiates the need of data harmonization, 
which will enable researchers to plan study design involving data collection from different scanners improving the fidelity 
of multi-site or longitudinal studies.   Although high-resolution (HR) imaging of Tb can be achieved by using sophisticated 
hardware components such as high pitch detector, x-ray tube with fine focal spot etc. it reduces scan speed and increases 
CT-machine cost as well as radiation dose. Hence, computational methods have gained popularity for reconstruction of 
HR images from their low-resolution (LR) counterpart and such methods can be divided into two broad categories: (1) 
model-based reconstruction techniques, and (2) learning-based methods.  

Model-based reconstruction algorithms uses prior assumption about the image degradation process to regulate the 
reconstruction of HR image features.46-48 In contrast learning-based methods learns a non-linear mapping function to 
reconstruct HR image from the LR counterpart.49-52 Numerous deep learning (DL) based methods have shown promising 
results in HR reconstruction for different in vivo CT modalities.52-57 Chen et al.58 developed a deep densely connected 
network for super resolution (SR) reconstruction of MR images. Chaudhury et al.54 trained a 3-D convolutional neural 
network (CNN) for SR reconstruction of MR images using paired high- and low-resolution image slices. Park et al.55 
proposed an U-net based SR reconstruction technique for CT images. Yu et al.56 combined a single-slice CT SR network 
(s-CTSRN) with skip connections and a multi-slice CT SR network (m-CTSRN) to reconstruct SR CT images.  Generative 
adversarial network (GAN) has been widely used for SR reconstruction of Tb microstructure.  One of the reasons for vast 
popularity of GAN based methods for SR reconstruction is that they can be trained in unsupervised fashion which does 
not require matching pairs of LR and HR datasets.57,59-62 Ledig et al. trained a GAN based SR reconstruction method 
(SRGAN) where the objective function is defined as a weighted sum of adversarial and content loss functions.59 Wang et 
al. used Residual-in-Residual Dense Block (RRDB) without batch normalization as the building block of SRGAN to 
eliminate noisy artifacts in reconstructed SR images using SRGAN.60 Wolterink et al. trained an unsupervised GAN to 
learn the non-linear mapping from LR to HR images and successfully enhanced the image quality.61 You et al. developed 
a two-dimensional (2-D) CT based SR reconstruction technique using GAN constrained by the identical, residual, and 
cycle consistency loss (GAN-CIRCLE ).57 

In this paper, we present an unsupervised DL based method for HR reconstruction of bone microstructure from LR CT 
scans using GAN-CIRCLE and evaluate its performance in terms of image quality as well as different microstructural 
measures.57,62  The facility of unsupervised learning alleviates the need for registering low- and high-resolution CT images, 
which is often unavailable. DL network architecture, data acquisition protocols, post-processing steps, computation of 
microstructural measures, and statistical methods used for evaluation are elaborated in section 2. Experimental results are 
described in Section 3, and the conclusions are drawn in Section 4. 



 
 

 
 

2. METHODOLOGY 
In this section, we describe (1) the network architecture of GAN-CIRCLE, CT scan protocols on low- and high-resolution 
MDCT scanners, (2) steps for harvesting LR and HR patches for training, validation, and testing, (3) different Tb 
microstructural measures examined in this paper, and (4) the statistical metrics used for evaluating these measures.  

2.1 Deep Learning Network Architecture 

A new deep learning network is developed using the basic principle of GAN-CIRCLE (Figure 1) and trained in an 
unsupervised manner, i.e. using unpaired LR and HR two dimensional (2-D) patches, to successfully recover HR bone 
microstructural features from a LR CT scan through non-linear deblurring and filtering. GAN-CIRCLE consists of two 
generator mappings 𝐺:𝑋 → 𝑌 and 𝐹:	𝑌 → 𝑋, where 𝑋 is the set of LR CT scans and 𝑌 is the set of HR CT scans. The 
overall goal of this network is to optimize the low-to-high resolution generator (𝐺:𝑋 → 𝑌) to learn the nonlinear mapping 
from low- to high-resolution CT scans while synergistically minimizing the cycle-consistency, adversarial, identity and 
joint sparsifying transform loss functions. The quality of the generator 𝐺 is directly controlled using a discriminator 𝐷! 
and the associated adversarial loss function 𝐿"#$%. During the learning process, both generator 𝐺 and discriminator 𝐷! 
compete against each other, thus synergistically improving themselves while reducing the adversarial loss. To prevent the 
network from overfitting, a cycle-consistency check is added through a counter generator 𝐹:	𝑌 → 𝑋 from HR to LR, and a 
cycle-consistency loss function 𝐿&'&. Similar to the generator 𝐺, the learning process of 𝐹 is controlled using another 
discriminator 𝐷( associated with adversarial loss function 𝐿"#$%. The training process is regularized by an identity loss 
function 𝐿)*+ to prevent the network from generating a significantly different output when a true HR (or LR) patch is fed 
as an input to the generator 𝐺	(or	𝐹). Finally, a joint sparsifying transformation loss function 𝐿,-+ is used for 
simultaneously sparsifying predicted images and reducing noise, while preserving anatomical features by minimizing the 
difference from the true HR image. So, during training the network tries to minimize the following objective function: 

𝐿#$%.&)/&01 =	𝐿"#$%(𝐷!, 𝐺) + 𝐿"#$%(𝐷(, 𝐹) + 𝜆2𝐿&'&(𝐺, 𝐹) + 𝜆3𝐿)*+(𝐺, 𝐹) + 𝜆4𝐿,-+(𝐺), 

where, 𝜆2, 𝜆3, 𝑎𝑛𝑑	𝜆4 are the weights for different losses.57 

Network architectures of the generators (𝐺 and 𝐹), and the discriminators (𝐷( and 𝐷!)	are shown in Figure 2 and Figure 3 
respectively. Generator network consists of a feature extraction module and a reconstruction module.  Feature extraction 
module is a concatenation of 12 non-linear SR blocks where each block consists of 3´3 convolution kernels, bias, leaky 
rectified linear unit (Leaky ReLU), and a dropout layer. Same number of filters as suggested by You et al.57 are used in 
each block. At all convolution layers stride is set to 1 except for the first layer where stride is 2. Finally, outputs of the SR 
blocks are concatenated using a skip connection before feeding into the reconstruction module to prevent overfitting and 
training saturation.  

A network in network architecture is adopted for the reconstruction module which consists of two parallel branches of 
CNNs and output from these two branches are concatenated before up sampling by a factor of 2. Two SR blocks, with 1´1 
convolution kernel, are used in the two parallel branches to reduce dimensionality while increasing non-linearity of the 

 
Figure 1.  Basic principle of GAN-CIRCLE for HR CT image reconstruction. Here, 𝑋 is the set of LR CT scans, and 𝑌 is the set of 
HR scans. The network comprises of two basic GAN modules (𝐺,𝐷!) and (𝐹, 𝐷"), each consisting of a generator and a discriminator; 
and these modules are responsible for low-high and high-low resolution image reconstruction, respectively. Different loss functions 
are synergistically reduced by the network, while regularization terms related to cycle-consistency and identity loss prevents the 
network from overfitting. 



 
 

 
 

network.  In the last convolutional block of the reconstruction network all the feature maps are fused to generate a residual 
image with all the high frequency details of the LR image. Finally, the input image is combined with the residual image to 
obtain the predicted HR image. 

The discriminator network is composed of 8 convolution layers with 64, 64, 128, 128, 256, 256, 512, and 512 filters 
respectively followed by two fully connected (FCN) layers with 1024 outputs and 1 output. 

2.2 Dataset Description 

The GAN-CIRCLE based HR reconstructor of bone microstructure was trained, validated and tested using LR and HR CT 
scans of human volunteers. Specifically, the distal tibia from left legs of twenty healthy volunteers (age: 26.2±4.5 Y; 10 
F) were scanned on two MDCT scanners. The study was conducted around the transition period of the MDCT scanner 
upgrade at the University of Iowa Comprehensive Lung Imaging Center (ICLIC). Distal tibia of each volunteer was first 
scanned on a LR Siemens FLASH scanner, and then they were recalled and rescanned on a HR Siemens FORCE scanner 
after upgrade. The average time gap between the LR and HR scans were 44.6±2.7 days with the minimum and maximum 
gaps of 40 and 48 days, respectively. The human study was approved by The University of Iowa Institutional Review 
Board and all participants provided written informed consent. The CT scan protocols on the two scanners are described in 
the following. 

FLASH scanner: Single X-ray source spiral acquisition at 120 kV, 200 effective mAs, 1 sec rotation speed, pitch factor: 
1.0, total effective dose equivalent: 170 µSv ≈ 20 days of environmental radiation in the U.S. Images were reconstructed 
at 200 µm slice-spacing using a normal cone beam method with a special U70u kernel.  

FORCE scanner: Single X-ray source spiral acquisition at 120 kV, 100 effective mAs, 1 sec rotation speed, pitch factor: 
1.0, total effective dose equivalent: 50 µSv ≈ 5 days of environmental radiation in the U.S. Images were reconstructed at 
200 µm slice-spacing and 150 µm pixel-size using Siemens’s special kernel Ur77u with Edge Technology.  

For both scanners, Siemens z-UHR scan mode was applied, enabling Siemens double z sampling technology and achieving 
high structural resolution.  

2.3 Data Processing, Training, and Validation 

A Gammex RMI 467 Tissue Characterization Phantom (Gammex RMI, Middleton, WI) was used to calibrate both LR and 
HR CT Hounsfield numbers into BMD values. After calibration LR images were interpolated at 150 µm isotropic voxel 

 
Figure 2. Architecture of a generator. Stride within each convolution layer is 1 except for the first layer where the stride is 2. 

 
Figure 3. Architecture of a discriminator. Here, 𝑛 denotes the number of kernels in a convolutional layer, and 𝑠 denotes the stride. 



 
 

 
 

size using windowed sync interpolation.63 Ten out of twenty pairs of LR and HR BMD images were used for training and 
validation of the HR reconstructor. The other ten pairs of LR and HR images were used for testing after registering HR 
images to corresponding LR images.  Registration of HR images to the corresponding LR scans were performed in two 
steps— first, cortical bone and Tb network of the HR image was manually registered to the LR image using ITK-SNAP 
registration toolkit.64 In the second step, a rigid transformation was applied on the manually registered HR image for fine 
tuning, where registration process was initialized using the transformation matrix from the manual registration step. To 
improve the registration accuracy, region of interest (ROI) for registration cost function was defined as the distal tibia with 
a soft boundary. Ten thousand LR and ten thousand HR patches of size 64 ×	64 were independently harvested from LR 
and HR BMD images of ten volunteers for training. A different set of five thousand pairs of matching LR and HR patches 
from registered BMD images of ten other volunteers were used for testing and evaluation. Low- and high-resolution 
patches were randomly harvested from 30% peeled ROIs of LR and HR BMD images, and normalized to the unit interval 
of [0 1].  

Table 1. List of CT-derived trabecular bone measures examined in this paper. Nomenclatures of trabecular bone measures 
used by Bouxsein et al.67 and Chen et al.53 are followed here wherever possible. 

 

Figure 4.  Reconstructed HR images from LR CT scans using GAN-CIRCLE and comparison with true HR scan data. Each 
row presents matching original and reconstructed axial image slices from a human distal tibia dataset. Left-to-right 
columns: a 2-D image slice from a LR CT scan on a Siemens FLASH scanner (left); predicted HR image slice from the LR 
CT data (middle); and true HR image slice from post-registered Siemens FORCE scan (right). 

Parameter (unit) Description 

Tb.NA (mm2/mm3) Tb network area density, i.e., the average area of the medial surface of segmented 
bone per unit ROI 

Tb.Th (µm) Mean trabecular thickness computed by star-line analysis68 

Tb.Sp (µm) Mean trabecular spacing, i.e., the space between trabecular microstructures 
computed by star-line analysis68 



 
 

 
 

For training, weights of the convolution layers were initialized using the techniques proposed by He et al.65 During the 
training weights 𝜆2, 𝜆3,	and 𝜆4 were set to 1, 0.5, and 0.001 respectively. Slope of the leaky ReLU was set to 0.1 and drop 
out was applied to each convolution layer with 𝑝 = 0.8. The network was trained for 2000 epochs and took almost two 
days to train using Adam optimizer66 with 𝛽2= 0.5 and 𝛽3 = 0.9 and a learning rate of 1 × 10.5. 

2.4 Computation of Tb Microstructural Measures 

Tb measures used to evaluate the DL network are listed in Table 1. Following image processing steps were applied to each 
BMD image - (1) fuzzy skeletonization69 and computation of trabecular network area density (Tb.NA) measure and (2) 
star-line analysis for computation of trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp) measures.68 Note that all 
Tb measures were computed on 2-D slices of LR, true HR and predicted HR images. 

2.5 Statistical Analysis 

The performance of the network was quantitatively evaluated using structural similarity (SSIM) index70— a widely used 
method to estimate perceived quality of images and videos.  SSIM was computed between LR and true HR, as well as 
between predicted HR and true HR patches. Tb thickness, spacing, and network area measurements on 2-D slices were 
stacked to reconstruct a 3-D representation of the measures, and mean and standard deviation (SD) of each Tb measure 
from LR, true HR and predicted HR scans were computed over 100 randomly selected spherical ROIs of 12-pixel radius.  
All spherical ROIs were fully confined within the 30% peeled ROI of each scan. Finally, for each specimen linear 
correlation (r-value) and concordance correlation coefficients (CCC) were computed between the mean values of Tb 
measures derived from true HR and LR images as well as true and predicted HR images. 

3. EXPERIMENTS AND RESULTS 
Results of HR image reconstruction from LR images using GAN-CIRCLE are illustrated in Figure 4. Predicted HR images 
(middle row) from three LR images (left row) as well as matching true HR images (right column) are shown for visual 
comparison in Figure 4. HR reconstruction of a full image slice was obtained by independently reconstructing non-
overlapping 64 × 64 patches and stitching them together. It is worth mentioning that despite independent patch 
reconstruction no block effects are visible in the predicted HR images which suggests that cycle-consistency and other 
regularization constraints of the GAN-CIRCLE can avoid random patch-bias artifacts. For each example a matching 64 
×64 patch from the LR, true and predicted HR slices is zoomed in to display the performance of the method at the level of 
Tb microstructures. Visual comparison of the matching zoomed in patches shows that the GAN-CIRCLE successfully 
performs a non-linear deblurring and filtering to reconstruct HR Tb microstructural features from blurred and noisy LR 
data. 

Table 2. Mean and standard deviation (mean ± SD) of linear and concordance correlation coefficients of LR and predicted HR 
derived Tb measures w.r.t the reference measures from true HR images for individual subjects.  

 LR vs. True HR Predicted HR vs. True HR 

Tb Measures Linear 
Correlation (r) CCC Linear 

Correlation (r) CCC 

Tb.Th (µm) 0.95 ± 0.02  0.66 ± 0.12 0.96 ± 0.02 0.90 ± 0.06 

Tb.Sp (µm) 0.96 ± 0.02  0.93 ± 0.05 0.96 ± 0.04  0.94 ± 0.05 

Tb.NA (mm2/mm3) 0.88 ± 0.07 0.83 ± 0.11 0.88 ± 0.05  0.84 ± 0.12 

For quantitative evaluation four thousand patches entirely lying inside the Tb region were used. SSIM values was computed 
between LR and true HR, as well as between predicted HR and true HR patches and the results of the paired t-test suggest 
that the reconstruction network significantly improves (p < 0.01) the structural similarity with the true HR images. Mean 
and standard deviation of the r-values and CCCs of Tb.Th, Tb.Sp, and Tb.NA measures from ten test subjects are presented 
in Table 2. No significant difference (p > 0.05) was observed between the r-values from LR and true HR images, as well 
as the predicted and true HR images for all three Tb measures.  Agreement between the Tb measures computed from 
predicted HR and LR images and the reference measures derived from the true HR scan was evaluated in terms of CCC.  
CCC observed between Tb measures derived from predicted and true HR images was higher than the CCC measured 
between Tb measures from LR and true HR images.  Most significant improvement in CCC was observed for Tb.Th (p < 



 
 

 
 

0.0001) measure, where mean CCC increased from 0.66 for LR and true HR images to 0.95 for predicted and true HR 
images. However, relatively smaller improvement in CCC was noticed for Tb.Sp (p < 0.01) and Tb.NA (p < 0.01) measure 
as compared to Tb.Th.  

 
Figure 5. Linear correlation and Bland-Altman plots of Tb.Th measures computed from LR, HR, and predicted HR images 
of ten test subjects. (a,b) Linear correlation analysis (a) and Bland-Altman plot (b) of Tb.Th values derived from LR and 
true HR images. (c,d) Same as (a,b) but for Tb.Th measured derived from true and predicted HR images.  

CCC and r-values from the combined analysis of Tb measurements from ten test subjects are reported in Table 3. No 
significant change was observed for r-values of Tb measures computed from LR and predicted HR images, and true and 
predicted HR images. For the combined analysis CCC between Tb.Th values from LR and true HR images was found 

Table 3. Results of combined linear and concordance correlation analysis of different Tb measures derived from LR, HR, and 
predicted HR images of test test subjects.  

Tb Measures LR – True HR Predicted HR – True HR 

 Linear 
Correlation (r) CCC 

Linear 
Correlation 

(r) 
CCC 

Tb.Th (µm) 0.95 0.72 0.96  0.90 

Tb.Sp (µm) 0.94  0.90 0.97  0.92 

Tb.NA (mm2/mm3) 0.87 0.82 0.90  0.83 

to be 0.72 while for predicted and true HR CCC was 0.90. Linear correlation (a,c) and Bland-Altman plot (b,d) of Tb.Th 
measurements from ten test subjects are shown in Figure 5. As can be seen from (b) and (d), mean difference between 
Tb.Th measurements from true and predicted HR images are significantly lower than the mean difference in Tb.Th values 
from LR and true HR images. This observation suggests that the proposed HR reconstructor successfully reduces the bias 
in Tb.Th measures from LR images.  However, when combined no significant improvement in CCC was noticed for Tb.Sp 



 
 

 
 

and Tb.NA.  CCC of Tb.Sp and Tb.NA measures derived from LR and true HR images were 0.90 and 0.82 respectively, 
whereas CCC for both measures derived from predicted and true HR images were 0.92 and 0.83 respectively. 

4. CONCLUSIONS 
In this paper, we have developed and evaluated an unsupervised deep learning-based method for HR reconstruction of 
bone microstructure from LR CT scans using GAN-CIRCLE. The unsupervised training method eliminates the need for 
registered pairs of low and high-resolution images, which is often not available or even not feasible.  The network has been 
evaluated qualitatively as well as quantitatively on human ankle CT scans from two different scanners with different image-
resolution features. Results of quantitative evaluative experiments have shown that the HR reconstructor not only improves 
the quality of LR images but also improves the agreement of Tb microstructural measures with the same measures derived 
from true HR images. These observations suggest that the new HR reconstructor will further improve the fidelity of both 
cross-sectional and longitudinal studies by allowing data harmonization to overcome challenges related to discrepancies 
in imaging facilities and features at different research performance sites. 
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