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Abstract Segmentation of vasculature specific to the
patients’ carotid vasculature is a complicated and challeng-
ing task because of its complex geometrical structure and
interconnections. Accurate or approximate digital phantoms
of the vasculature are extremely useful in quick analysis of
the vascular geometry and the modelling of blood flow in
the cerebrovasculature. All these analyses lead to effective
diagnosis and detection/localization of the diseased arterial
segment in the cerebrovasculature. In this work, we have
proposed a semiautomatic geodesic path propagation algo-
rithm based on fuzzy distance transform to generate digital
cerebrovascular phantoms from the patients’ CT angiogram
(CTA) images. We have also custom-developed a 2-D/3-D
user interface for accurate placement of user-specified seeds
on the input images. The proposed method effectively sep-
arates the artery/vein regions from the soft bones in the
overlapping intensity regions using minimal human inter-
action. Qualitative results along with 3-D rendition of the
segmented cerebrovasculature on eight patients’ CTA images
are presented here.
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1 Introduction

Automatic or semiautomatic segmentation of vasculature
from its surroundings is an active area of research in the
field of medical image analysis. It helps researchers as
well as clinicians to explore the underlying hemodynam-
ics, which is one of the major factors in determining one’s
vascular health. The present work is focused on human
carotid vasculature/cerebrovasculature. In general, human
cerebrovasculature refers to the underlying vessel network
circulating blood to/from the various parts of the brain. Arter-
ies and veins are themain components of this network. In this
work, we are mainly interested in the carotid arteries, which
are supplying oxygenated and nutrient-filled blood to entire
cerebral system.Anatomical analysis of the lumen vessel net-
work is the first step towards exploration of the blood flow
patterns in the vasculature, determination of irregular dilation
of vessel wall, detection of possible obstruction in the flow,
etc. To understand the anatomy of carotid arteries properly,
one should have the knowledge about the anatomy of circle
of Willis. The left and right internal carotid arteries, anterior
and posterior cerebral arteries (left and right), anterior and
posterior communicating artery form this circular vascula-
ture. The basilar and middle cerebral arteries are also part of
this circle.

Generally, there are two ways to analyse the carotid arter-
ies: (1) using physical vascular phantom, which is a replica
of the original one and (2) digital modelling of the vessel
network using mathematical model. Both of them have indi-
vidual merits and demerits, and researchers sometimes work
on both of themodels to verify the experiments as inwork [1–
3]. The present work, extension of our previous work in [2],
focuses only on the segmentation of vasculature using math-
ematical model from human cerebral CT angiogram (CTA)
images. One can find many existing works on segmentation
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of carotid vasculature in the present state of the art. Banerjee
et al. [3] proposed a robust mathematical model using piece-
wise Bezier curve for design of approximate digital model
of segmented cerebrovasculature to reduce the overhead of
real-life patient study and ex vivo/ in vivo analysis. They
also custom-developed a 2-D/3-D user interface for construc-
tion of sphere-based tubular structure with varying diameter.
In [4], they extended the work in [3] and developed a new
module to segment cerebrovasculature from real patients’ CT
angiogram images of human brainwith the help of previously
developed 2-D/3-D user interface. But the segmentation pro-
cess needs a lot of human interactions. In addition to active
human interactions, another challenge in the segmentation
process lies in the segmentation of vessel and bones in the
region of overlapping intensities. In CT angiogram images
of human brain, there are high overlapping between intensity
regions of soft tissues, bones, arteries and veins which makes
the images fuzzy in nature. Researchers have adopted various
FDT-based and fuzzymorphoconnectivity-based approaches
to separate objects residing in the overlapping intensity
regions. Saha et al. [5] presented a topomorphplogical way to
separate objects fused at different scale and locations where
no trace of intensity variation can be found. The authors
have applied this methodology on non-contrast pulmonary
CT images to separate artery and vein and on mathemat-
ical phantoms to distinguish different object’s identity at
location of isointensity. Basu et al. [6] have extended the
work in [5] to separate objects in shared intensity space,
and the method have been experimentally proven to give
elegant results with patients’ CT angiogram images of the
brain to separate soft bones and vessel network. In [7,8], they
have presented the theoretical foundation of the multi-scale
opening (MSO) and established it as new topomorphological
operator.

Although accuracy and reproducibility of the algorithm
in segmenting carotid vasculature is very promising, it
has some drawbacks too. First, the performance of the
algorithm depends on the initial selection of three dif-
ferent kinds of seed points. Inaccurate selection of seed
points may lead to decreased performance. Also, it needs
active human participation in the region of high over-
lapping of intensities, low resolution, imaging ambigui-
ties.

Using the proposed algorithm, we have successfully
reduced the amount of human participation by the notion of
fuzzy distance transform (FDT)-based geodesic path propa-
gation approach [2]. Please note that, the concept of FDT has
been widely used before in various segmentation algorithms
[9–12].

In the subsequent discussions, first we will introduce the
theory and notations related to the proposed algorithm, fol-
lowed by the methodology of our proposed algorithm and
experimental results.

2 Theory and methods

A 3-D cubic grid is expressed by {Z3|Z is the set of positive
integers}. A point on the grid, often referred to as a voxel,
is a member of Z3 and is denoted by a triplet of integer
coordinates. Standard 26 adjacency [13] is used here, i.e.
two voxels P = (x1, x2, x3) and Q = (y1, y2, y3) ∈ Z3 are
adjacent if and only if,

{max (|xi − yi |) ≤ 1 | 1 ≤ i ≤ 3},

where |·| means the absolute value. Two adjacent points in a
cubic grid are often referred to as neighbours of each other.
Twenty-six neighbours of a voxel P omitting itself is sym-
bolized as N ∗ (P).

CT angiogram images are 3-D greyscale images where
each voxel is represented by 8 bit character or 16 bit unsigned
short value. Numeric value of a voxel denotes the intensity of
the voxel. Artery, veins and soft tissues acquire small inten-
sity values, whereas bones take high intensity values. We
will denote artery and veins together as vessels. Intensity of
vessels and soft tissues are highly overlapping. In this paper,
we are mainly interested in segmentation of arterial tree of
human cerebrovasculature.

It has been observed that in general intensity of vessels
lies between 130 and 500Hu (Hounsfield unit), as described
in reference [6], but there is almost zero overlapping around
the middle point of this intensity scale. Hence, voxels within
this intensity range are considered as object voxel and rest of
the intensity regions are taken as background.

Distance transformation [14] is an essential step in many
2-D/3-D image processing tasks like merging and segmenta-
tion, clustering and matching, finding out centre of maximal
discs/centre of maximal balls, skeletonization, etc. The dis-
tance transformation algorithm works on a binary image and
converts it to an image where the value of each foreground
pixel/voxel depicts the distance from the nearest background
pixel/voxel. Over the years various distance transformation
algorithms have been proposed both in 2-D and 3-D [15–
19]. Among the different proposed distance metrics, city
block distance (4-distance)/chess board distance (8-distance)
is popular in two dimension and in three dimension these are
6-, 18- and 26-distance. If P = (x1, x2, x3) is a point in a
3-D image, then DT value of that point will be,

DT (P) =
{
DT (Qi ) + dk, DT (Qi ) + dk < DT (P)

DT (P) , otherwise
(1)

where, Qi is the neighbour of P , i = 1, 2, . . . , 26. dk=1,2,3 is
the approximate Euclidean distance of P from three different
kinds of neighbour voxels, i.e. 6-neighbour, 18-neighbour
and 26-neighbour. In the present work, three approximate
euclidean distance values are 3, 4 and 5 for 6-, 18- and 26-
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neighbour, respectively. Distance transform performs very
well in case of binary images. But in case of segmentation
of cerebrovasculature where the image is fuzzy in nature,
distinction between vessel and soft bones is crucial which
cannot be done inDT image.Hence, fuzzy distance transform
is appropriate in the present work.

The theory of fuzzy distance transform is well established
by Saha et al. in [20]. In this section, the formal notation
related to the theory of FDT is introduced first. An objectO is
a fuzzy set {(p, μO (p)) |p ∈ Z3}, whereμO : Z3 → [0, 1]
is the membership function. The support of an objectO is the
set of all voxels with nonzeromembership value, i.e. θ (O) =
{p|p ∈ Z3 and μO (p) �= 0}. θ̄ (O) = Z3 − θ (O) is the
back ground. Let S denotes a set of object voxels; a path π in
S from p ∈ S to q ∈ S is a sequence of successive adjacent
voxels, i.e. 〈p = p0, p1, . . . , pl = q〉. A link is a path 〈p, q〉
consisting of exactly two mutually adjacent voxels p, q ∈
Z3. The length of a path π = 〈p0, p1, . . . , pl〉 in a fuzzy
object O, denoted by

∏
O (π) is sum of the length of all

links along the path, i.e.

∏
O

(π) =
l−1∑
0

1

2
(μO (pi ) + μO (pi+1)) ||pi − pi+1|| (2)

The fuzzy distance between two voxel p, q ∈ Z3 in an object
O, expressed asωO (p, q), is the length of one of the shortest
path from p to q, i.e.

ωO (p, q) = minπ∈(p,q)

∏
O

(π) |p (p, q) , (3)

where p (p, q) is the set of all paths from p to q. The FDT
of an object O is an image {(p,� (p)) |p ∈ Z3}, where
�O : Z3 → 	+|	+ is the set of all real numbers including
zero, is the fuzzy distance from the background, i.e.

�O (p) = min
q∈θ(O)

ωO (p, q) (4)

A local maxima is defined as the FDT value at nearest locally
deepest voxel. Let Lmax ⊂ θO be the set of locally deepest
voxels, i.e.

Lmax = {p|p ∈ θ(O) and ∀q ∈ Nl(p),�O(q) ≤ �O(p)}
(5)

whereNl (p) is the (2l + 1)3 neighbourhood of p. So, a point
may have several locally deepest points or it may not have
any local maxima point in its neighbourhood.

We represent whole image as an undirected graph G =
(V, E) where V is the vertex set denoted by {P|P is a voxel
in the 3-D image, E is the set of edges denoted by E =
{(P1, P2) |P1 and P2 are adjacent}.

Methodology used here is to find the centre point of the
presumed artery between input seed points and draw spheres
in these points with radius equal to the FDT value of that
point. A sphere S (P, r) with centre P = (xc, yc, zc) and
radius r is the locus of all points (x, y, z) in z3 such that,

(x − xc)
2 + (y − yc)

2 + (z − zc)
2 = r2

Geodesic path [21] is defined as minimum-cost shortest path
between two points in two- or three-dimensional space. Dijk-
stra’s shortest path algorithm has been used for geodesic
path propagation with modification so that shortest path will
always pass through the nearest local maxima point if it
exists; otherwise, it will pass through the maximum FDT
value point in its neighbourhood. To force the geodesic path
between two seed points to pass through nearest local max-
ima points or maximum FDT value point, the edge weight
between any point and corresponding nearest local maxima
point or maximum FDT value point should be minimum.
Here, we introduce a cost function β that computes edge
weights between a point P = (x1, x2, x3) and one of the
locally deepest points Q = (y1, y2, y3) εZ3 as follows:

β (P, Q) =
(

2

(DT (P) + DT (Q))

)
× DIST (P, Q) . (6)

where

DIST (P, Q) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

(7)

Dijkstra’s algorithm is a greedy method where from current
point algorithm chooses a neighbour connected through least
cost edge for next iteration. In the proposed method due to
cost function β, it will always select the nearest local maxima
point or maximum FDT value point in the neighbourhood of
the current point. After termination, the algorithmwill return
connected centre points of the presumed artery. If we draw
sphere taking these points as centre and radius equal to the
FDT values of the point, we will get the desired segmenta-
tion.

As the proposed method is a semiautomatic algorithm,
user may not get accurate result at first; hence, trial and
error method should be used to obtain proper segmentation
result. In this method, user can modify the generated phan-
tomby giving extra seed points.We can summarize thewhole
method in following steps Fig. 1.

3 Experimental methods and results

The experimental methods are facilitated with the help of our
custom-developed 2-D/3-D graphical user interface allowing
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Fig. 1 Modular representation of the proposed algorithm

axial, coronal and sagittal views of segmented data. Facilities
of selecting and editing different seed points are supported
within the graphical user interface. With the help of the GUI,
we have taken seed points as input and visualized the seg-
mented results in axial, coronal, sagittal views. The 3-D
rendition of the generated phantom in shown with the help of
popular ITK-SNAP software [22]. We have worked with two
different kinds of data: mathematically generated approx-
imate phantom and another is segmented arterial tree from
original patient’sCTA images. Figures 2, 3 and 4 expose how
the proposed algorithm actually works with mathematically
generated approximate arterial phantom. Figure 2 shows that
the proposed algorithm generates discrete set of geodesic
points on binary phantom data. Figure 3 shows some of the
intermediate steps of geodesic points generation through six
images (Fig. 3a–f). Total 18 initial seed points are taken to

generate the set of geodesic points. Points are taken pairwise
as start point and end point.

The accuracy of the generated geodesic points is checked
by adding the set of discrete points as an overlay image with
original image with the help of ITK-SNAP s/w in Fig. 4.

Now, the results on original patients’ CTA images are
shown in Figs. 5, 6 and 7. Figure 5 shows the results on
image id-3036. The intermediate steps of gradual segmen-
tation of the arterial tree from its surroundings is shown by
the images in Fig. 5a–f. A total of 14 seed point is used for
segmentation. Initial seed points are taken in two different
fashions: (1) start and end points and (2) joining points. The
long segments generated by the first way, start and end points
are taken initially and the intermediate points are generated
by the algorithm. To generate the in-between small segments,
the second way is chosen. If a point is chosen as a joining
point, the proposed algorithm generates a set of geodesic
points such that if a path is created by joining these points,
the path will connect to the nearest arterial segment.

Segmentation results are shown on eight patients’ CTA
image in Fig. 6. Blue coloured portion in Fig. 6e shows
aneurysm present in the cerebrovasculature. The accuracy of
all the segmented data are verified by overlaying the phan-
toms with the original images. Figure 7 shows the overlay
of image id-1016 with the original image in axial, coronal
and sagittal views and 3-D rendition with the help of ITK-
SNAP s/w. We have compared our proposed algorithm for
segmentation of cerebrovasculature with theMSO algorithm
proposed by Saha et al. in [8]. From Table 1, it can be easily
seen that the number of vessel seeds required for reconstruct-
ing arterial tree for all the images (Image id 1016-2008) are

Fig. 2 a Mathematically generated binary phantom. b Discrete set of geodesic points after applying the proposed algorithm on (a)
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Fig. 3 a–f Intermediate steps of generation discrete set of geodesic points for the mathematical phantom image shown in Fig. 2a

Fig. 4 Overlay of the set of
discrete geodesic points with the
original binary phantom data
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Fig. 5 a–f Six phases of
segmentation of vasculature
from a CTA image (Data
id-3036)

Fig. 6 a–h Digital phantoms generated around circle of Willis from 8 different CTA images. Image id—a 2005, b 1016, c 2001, d 2008, e 2009,
f 3029, blue coloured portion is aneurysm g 3032, h 3036 (colour figure online)
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Fig. 7 A segmented phantom image is shown as overlay of colour (red) with respect to the original CTA image. a Shows axial view, b shows
coronal view, c shows sagittal view and d 3-D rendering of the segmented phantom with the help of ITK-SNAP s/w (colour figure online)

Table 1 Comparative analysis of no. of seeds required for segmentation
of arterial tree from the other components in MSO algorithm and the
proposed algorithm

Image ID No. of vessel
seeds used in
MSO Saha et
al. [8]

Total no. of seeds
(vessel + bone +
seperator) used in
MSO Saha et al. [8]

Total no. of seeds
in our Algorithm

1016 14 33 12

2005 28 50 13

3029 13 41 14

2001 14 45 12

3032 9 46 13

3036 8 35 14

2008 16 34 14

2009 15 30 10

lesser than the original MSO algorithm. In addition to the
less number of seed points, the advantage of the proposed
algorithm is that at the beginning users have to select only
vessel seed points for segmenting arterial tree from the other
components. On the contrary, in MSO algorithm the users
have to select three different types of seed points, e.g. vessel
seeds, separator seeds and the bone seeds.

4 Conclusion

The present work is focused towards reducing the number
of user interaction in the segmentation process as well as

proper segmentation of vasculature from soft bones in the
overlapping intensity area. This paper has adopted fuzzy dis-
tance transform-based geodesic path propagation approach
as in our previous work in [2], and it successfully over per-
formed the pervious approaches made by Saha et al. [8] and
other research groups. Geodesic points and fuzzy distance
transformation are used to find the radius of the arterial tube.
The proposed process is semiautomatic, and the user can
modify the generated digital phantom structures to make it
more accurate. We argue that the proposed algorithm is both
efficient and precise. Digital phantoms generated through
this algorithm can be helpful in studying the arterial bends,
bifurcated regions, joins and possible modelling of digital
fluid flows in human cerebrovasculature. We have used the
ITK-SNAP [22] open-source software to overlay generated
phantom structures over original CTA images. In future,
we may attempt to use the generated digital phantoms for
homodynamic analysis in human cerebrovasculature. Dig-
ital phantoms are also useful in various other bio-imaging
applications, and we propose to develop similar synthetic
structures for analysis of structural/plastic changes in hip-
pocampal dendritic spines [23].
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