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Abstract. Precise and efficient object boundary detection is the key for 

successful accomplishment of many imaging applications involving object 

segmentation or recognition. Blur-scale at a given image location represents the 

transition-width of the local object interface. Hence, the knowledge of blur-

scale is crucial for accurate edge detection and object segmentation. In this 

paper, we present new theory and algorithms for computing local blur-scales 

and apply it for scale-based gradient computation and edge detection. The new 

blur-scale computation method is based on our observation that gradients inside 

a blur-scale region follow a Gaussian distribution with non-zero mean. New 

statistical criteria using maximal likelihood functions are established and 

applied for local blur-scale computation. Gradient vectors over a blur-scale 

region are summed to enhance gradients at blurred object interfaces while 

leaving gradients at sharp transitions unaffected. Finally, a blur-scale based 

non-maxima suppression method is developed for edge detection. The method 

has been applied to both natural and phantom images. Experimental results 

show that computed blur-scales capture true blur extents at individual image 

locations. Also, the new scale-based gradient computation and edge detection 

algorithms successfully detect gradients and edges, especially at the blurred 

object interfaces. 

Keywords: Scale, intensity gradient, blur-scale, maximum likelihood function, 

Mahalanobis distance, edge detection. 

1 Introduction 

Computerized image analysis and understanding [1, 2] has drawn major attention over 

the last two decades inspired by the rapid growth in image data generated from 

different sections of human society including medical imaging and social networking. 

Object segmentation, quantitative structural analysis, and recognition are key 

challenges in many imaging applications. [3-8] The performance of most object 

segmentation methods is largely dependent on accurate definition and detection of 

object interfaces and edges. [9, 10] Often, object interfaces or boundaries are defined 

by sudden or gradual shifts in single or multiple image properties. For example, in a 

grayscale image, object interfaces are distinguished by changes in image intensity 
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values.[11] Such shifts in image properties at object interfaces may be sudden or 

gradual, and the notion of blur-scale [10, 12] is used to express transition-widths of 

object interfaces. Blur-scales may be different for different images; also, it may be 

space-variant within the same image.  

In general, image segmentation algorithms [13-20] use high intensity gradients to 

define object boundaries. However, difficulties emerge at object interfaces with large 

blur-scales, where intensity changes from one object to the other are gradual, and a 

condition of high intensity gradients may fail causing leakages. Thus, it is essential to 

determine blur-scales to capture the total intensity shift across a full transition of 

intensities between two objects for accurate and robust detection of edges. Several 

theories and methods have been proposed in the literature to compute space-variant 

blur-scales and their applications for edge detection. [9, 12] To the best of our 

knowledge, Marr and Hildreth [12] first introduced the notion of blur-scale and used 

the second derivative of multi-scale Gaussian kernels and zero crossing segments of 

different scales for edge detection. Canny [9] presented a multi-scale edge detection 

algorithm using novel approaches of non-maximal suppression generating single pixel 

thick edges and hysteresis allowing two threshold values for improved discrimination 

among noisy and true edge segments. Canny’s edge detection algorithm has been 

widely used, and it has been further studied and improved by others. Bao et al. [21] 

improved Canny’s method and suggested to combine gradient responses at different 

scales by multiplication and use the combined gradient response for edge detection. 

Bergholm [22], proposed an edge detection algorithm that tracks events important to 

edge detection from the coarse to finer scale to localize the edges accurately. There 

are several methods in the literature, which explicitly compute local blur-scales. [10, 

23, 24] Jeong and Kim [23] developed an adaptive scale based edge detection 

algorithm where local optimum scale is defined by the size of the Gaussian filter that 

minimizes a predefined energy function. As reported by the authors, the scale 

computation results are sensitive to local minima issues of the energy function. 

Lindeberg [24] presented a similar local scale computation algorithm for edge 

detection, where optimal scale at a pixel is determined at the maxima of a local edge 

strength function. Elder and Zucker [10] proposed a local blur-scale computation 

based edge detection algorithm, where the intensity profile across an object transition 

is modeled using a pre-defined sigmoid function. 

Most of the above algorithms use a pre-defined model for edge transition functions 

and suffer from local optima related problems. In this paper, we present a model-

independent local blur-scale computation algorithm and apply it for edge detection. 

Our method is based on a simple observation that intensity gradients over a blur-scale 

region follow a Gaussian distribution with a non-zero mean. A blur-scale based 

gradient computation method has been presented that enhances gradients at blurred 

edges while leaving gradients at sharp edges unaffected. Finally, a scale-based edge 

detection algorithm is developed using scale-based gradients.  
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2 Theory and Algorithms 

In this section, we describe new theory and algorithms to compute local blur-scale 

and present its application to edge detection. In general, in a true scene, object 

interfaces form sharp transition in illumination or material density. Finite image 

resolution or other artifacts, add blur at such interfaces. Specifically, in a grayscale 

image, blur-scale of an object interface at a given location is the transition-width of 

the interface at that location. The premise of our blur-scale computation algorithm is 

based on a simple observation that intensity gradients inside a local blur-scale region 

follow a Gaussian distribution with nonzero mean. In the following paragraphs, we 

formulate new test criteria and present a new algorithm for blur-scale computation 

guided by this observation, and finally describe its application in edge detection.  

Let 𝐼 denote an image intensity function and ∇𝐱𝑖  denote the gradient vector at a 

given location 𝐱𝑖 . The blur-scale computation algorithm is developed based on the 

evaluation of two hypotheses. Our first hypothesis is that observed gradient vectors 

∇𝐱1, ∇𝐱2, ⋯ , ∇𝐱𝑛 inside a blur-scale region are random samples from a population 

with an expected probability density function (pdf) 𝐺(⋅ |𝛍e, Σe), where 𝛍e and Σe are 

the mean and covariance matrix of gradient vectors. Let 𝑋o denote the set 

{∇𝐱1 , ∇𝐱2, ⋯ , ∇𝐱𝑛}. We formulate a test criterion to evaluate the first hypothesis 

based on the ratio of two likelihood estimators. [25] Let 𝒫𝑛 denote the set of all 

possible sets of 𝑛 gradient vectors. Let 𝐿(𝛍e, Σe|𝑋) denote the likelihood measure that 

the gradient vectors in a set 𝑋 ∈ 𝒫𝑛 are random samples from a population with the 

pdf 𝐺(⋅ |𝛍e, Σe). Thus, the following likelihood ratio estimator evaluates whether 

gradient vectors in 𝑋o are random samples from a known population: 

𝜆1(𝑋o|𝛍e, Σe) =
𝐿(𝛍e, Σe|𝑋o)

sup
𝑋∈𝒫𝑛

𝐿(𝛍e, Σe|𝑋)
  .                                      (1) 

To test our hypothesis, we define a rejection region of the form 𝜆1(𝑋o|𝛍e, Σe) ≤ 𝑐1, 

where 𝑐1 | 0 ≤ 𝑐1 ≤ 1 is the rejection confidence. Using the fact that the largest value 

of 𝐿(𝛍e, Σe|𝑋) occurs when all gradient vectors in 𝑋 equates to 𝛍e, it can be shown 

that 𝜆1(𝑋o|𝛍e, Σe) ≤ 𝑐1is equivalent to the following test criterion: 

√
∑ 𝑑𝑀

2 (∇𝐱𝑖, 𝛍e, Σe)𝑛
𝑖=1

𝑛
> √

−2 log 𝑐1

𝑛
,                                    (2) 

where 𝑑𝑀(∇𝐱𝑖 , 𝛍e, Σe) is the Mahalanobis distance [26] of 𝐱𝑖  from the mean 𝛍e using 

the covariance matrix Σe. 

Our second hypothesis is that the mean of the gradient vectors ∇𝐱1, ∇𝐱2, ⋯ , ∇𝐱𝑛 is 

non-zero. In other words, we examine whether the Mahalanobis distances from the set 

𝐷o = {𝑑𝑀(∇𝐱𝑖 , 𝟎, ΣN)|𝑖 = 1 to 𝑛} are random samples from a standard normal 

distribution, where ΣN represents image noise derived from homogeneous regions. 

Note that 𝑑𝑀(∇𝐱𝑖 , 𝟎, ΣN) is the Mahalanobis distance of a gradient vector ∇𝐱𝑖  from 
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the null vector 𝟎. Hence, the rejection region for the second hypothesis is formulated 

as: 

𝜆2(𝐷o) =
𝐿(0,1|𝐷o)

sup
𝜇

𝐿(𝜇, 1|𝐷o)
≤ 𝑐2,                                                (3) 

where 𝑐2 | 0 ≤ 𝑐2 ≤ 1 is the rejection confidence. It can be shown that the maximum 

value of the likelihood estimation 𝐿(𝜇, 1|𝐷o) happens when 𝜇 equates to the mean 𝜇o 

of Mahalanobis distances in 𝐷o. Using the optimality criterion and a few algebraic 

operations, we can rewrite (3) as follows: 

∑ 𝑑𝑀(∇𝐱𝑖 , 𝟎, ΣN)𝑛
𝑖=1

𝑛
> √

−2 log 𝑐2

𝑛
 .                                          (4) 

2.1 Algorithms 

The new blur-scale computation algorithm starts with the computation of gradient 

vectors at all image pixels using a derivative of Gaussian (DoG) kernel. The method 

computes the blur-scale at each image pixel using a star line approach and an iterative 

method. A blur-scale region at a pixel 𝑝 is a circular disk centered at 𝑝, and its 

diameter 2𝑟 represents the corresponding blur-scale. At a given pixel, the scale 

computation starts with 𝑟 = 0.5, and after each iteration, the value of 𝑟 is incremented 

by 0.5 until both hypotheses are rejected or a maximum scale value occurs. At a given 

pixel 𝑝 and a scale 2𝑟, we verify the test criteria defined in Equations (2) and (4) as 

follows. First, we compute the set 𝑋o = {∇𝐱1, ∇𝐱2, ⋯ , ∇𝐱𝑛} of gradient vectors at 

uniformly distributed sample points along the circle 𝐶𝑟(𝑝) centered at 𝑝 with radius 𝑟. 

To make the sample density independent of 𝑟, we sample 6𝑟 number of gradient 

vectors on 𝐶𝑟(𝑝). The gradient vector at a sample point is computed using linear 

interpolation [27] of gradient vectors at the four nearest pixels. The expected mean 

gradient vector 𝛍e is computed as the vector mean of the gradient vectors at all pixels 

inside the circular disk representing the immediate smaller scale, i.e., 2𝑟 − 1. A 

constant 2-by-2 matrix is used for Σe, which is defined in terms of image noise. Image 

noise is represented by a covariance matrix ΣN, which is computed over homogeneous 

regions. Assuming that noise is isotropic and uncorrelated, the matrix ΣN [1,1] =

ΣN [2,2] =
𝜎2

2
 and ΣN [1,2] = ΣN [2,1] = 0 is used, where 𝜎2 is the variance of the 

intensity gradients computed over homogenous regions. Finally, the covariance 

matrix Σe is defined as Σe = 9ΣN. 
Scale-based gradient at a pixel 𝑝 is computed as the vector sum of the gradients 

over the circular disk 𝐶𝐼s(𝑝)/2(𝑝) centered at 𝑝, where 𝐼s(𝑝) represents the computed 

blur-scale at 𝑝; note that blur-scale denotes the diameter of the local blur region, 

which is divided by two to get the value of radius. Our edge detection algorithm is 

applied on the scale-based gradient image, which is accomplished using the following 

steps similar to the algorithm by Canny [9] – (1) non-maximal suppression, (2) 

hysteresis, and (3) skeletonization[28, 29] and removing noisy branches[8, 30-32]. 
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During non-maximal suppression, a pixel 𝑝 with a blur-scale 2𝑟 is a local maxima if 

and only if there is no point 𝑞 on the diameter of 𝐶𝑟(𝑝) along the gradient direction of 

𝑝 such that the scale-based gradient at 𝑞 is greater than that of 𝑝. In the next step, 

hysteresis thresholding is applied using two threshold values 𝑡low and 𝑡high to select 

meaningful edge segments, while suppressing noisy edges. [9] The use of two 

thresholds allows to apply a high threshold value 𝑡high for isolated noisy edge points 

and a low threshold value 𝑡low for edge segments containing contextual information. 

Finally, the edge map obtained after hysteresis is skeletonized and noisy branches are 

pruned to get single pixel-thick edges.  

 

Fig. 1. Results of application of the new blur-scale computation and edge detection algorithms. 

(a) A grayscale image. (b) Color-coded representation of non-scale based gradient computation 

results using a constant DoG kernel. The color-coding scheme follows the color-disk, where the 

hue and intensity components of color represent the gradient orientation and magnitude, 

respectively. (c) Results of local blur-scale computation. (d) Illustration of blur-scales using 

circles centered at manually selected pixels along different edges. Diameters of individual 

circles represent blur-scales at respective pixels. (e) Color-coded display of scale-based 

gradient computation results using the same color-coding shown in (b). (f) Results of edge 

detection using blur-scale based gradients. Edge locations are shown in green. 
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3 Experiments and Results 

In this section, we will discuss our experiments and results using the new blur-scale 

computation and edge detection algorithms. The algorithms are applied on both real 

and computer generated phantom images. For all experiments, a constant value of 

0.002 was used for both 𝑐1 and 𝑐2 to ensure that, for the test criterion 𝜆1(𝑋o|𝛍e, Σe) >
𝑐1, at least three observed gradients have a Mahalanobis distance of two from their 

expected mean. 

 

Fig. 2. Results of the new blur-scale computation and edge detection algorithms for a 

computer-generated phantom image. (a) Original binary image. (b) A slow varying computer-

generated blur field used to apply a space-varying blur on the binary image. (c) Test phantom, 

generated by applying the blur field of (b) and a correlated white Gaussian noise at a contrast-

to-noise ratio of 12 on (a). (d-h) same as Fig. 1(b-f) but for the phantom image shown in (c). 

Results of blur-scale computation and edge detection for a grayscale image are 

shown in Fig. 1. Figure (a) shows a grayscale image of a plant and its shadow, and (b) 

represents the result of non-scale based gradient computation using a location 

invariant DoG kernel. Figure (c) presents the result of the blur-scale computation, 

where the intensity brightness is proportional to the local blur-scale. It may be noted 

from the blur-scale image that blur-scales along the shadow boundary form ridges that 

represent optimal edge locations. Also, the ridges along the shadow boundary are 
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brighter than the ridges along the sharp edges of the plant, which implies that blur-

scales along the boundary of the shadow are higher as compared to blur-scales along 

the boundary of the plant. Finally, it is worthy to note that blur-scales at homogeneous 

regions far from an edge are large. In figure (d), computed blur-scales along different 

boundary regions are shown by circles centered at manually selected pixels along 

edges. Specifically, the diameter of each circle represents the value of the blur-scale at 

its center. It may be visually noted that individual circles fully cover local object 

interface transition-widths at respective locations. Also, along the shadow boundary, 

circles are larger indicating greater blur. The result of blur-scale based gradient 

computation is presented in figure (e). Following our algorithm, the computed blur-

scale based gradient captures the total intensity difference across the full width of the 

object transition, which is visually notable along blurred regions of the shadow 

boundary.  In general, gradient values at blurred locations on the shadow boundary 

are enhanced, while those near the sharp edges remain unchanged. This improvement 

in gradient computation will be helpful for precise detection of edges near highly 

blurred regions. In figure (f), edges detected by our blur-scale based edge detection 

algorithm are shown in green. It is encouraging to note that the sharp edges along the 

plant as well as blurred edges along the shadow boundary are fully recovered.  

Fig. 2 presents the performance of our edge detection algorithm on a computer-

generated noisy phantom. A phantom was generated from a binary image of a bird, 

shown in Fig. 2(a). A slow-varying blur field, as shown in (b), was applied on the 

binary phantom image in the form of Gaussian smoothing to generate a blurred 

grayscale image. This blurred image was further degenerated by a correlated white 

Gaussian noise at the contrast-to-noise ratio of 12 to get the final test phantom image 

shown in (c). Results of local gradient and blur-scale computation on the phantom 

image of (c) are presented in (d,e), respectively. An illustration of the local blur-scale 

values using circles at quasi-regular sample points along the object boundary is 

presented in (f). The displayed blur-scales in (f) are satisfactory with visual blur at 

individual edge locations. Finally, the result of blur-scale based gradient computation 

is shown in (g), which is displayed using the exact same color coding used for (d). 

The blur-scale based gradient successfully captures the slow-varying edges, which are 

hardly visible in the non-scale based gradient image in (d). Figure (h) shows the 

detected edges in green which is completely aligned to the boundary of the test 

phantom despite such high noise.  

4 Conclusions 

A new theory and algorithms for local blur-scale computation have been presented 

and their applications to edge-detection have been demonstrated. The performance of 

the new algorithms on both natural and phantom images has been examined and the 

results are presented. New statistical test criteria examining whether a set of observed 

gradient vectors follow an expected Gaussian distribution with a non-zero mean have 

been introduced and applied to compute blur-scale at individual image pixels. It has 

been experimentally observed that blur-scales capture the extent of blur along the 
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object boundary. Computed blur-scales have been applied to develop a scale-based 

gradient computation algorithm, where the gradient vectors over the local blur-scale 

region are summed. Results of scale-based gradient computation provide effective 

edge detection by enhancing gradient magnitudes along the blurred edges, while 

gradients at the sharp edges remain unchanged and noise in homogenous regions is 

suppressed. Also, computed blur-scale has been used to formulate a scale-based non-

maxima suppression algorithm for edge detection. It has been experimentally shown 

that the new blur-scale based edge detection algorithm successfully detects edges 

even at blurred object regions. In the phantom experiment, it has been demonstrated 

that, despite the presence of significant noise and blur in the image, the algorithm 

successfully detects the boundary of the image. These initial results of blur-scale 

computation and edge detection are encouraging, which validates our new theory and 

algorithms for blur-scale computation and its applications. 
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